Trastornos neurológicos motores de instauración aguda asociados al SARS-CoV-2 en niños y adolescentes cubanos

Laura Macías Pavón, Patricia Castro Vega

Texto completo:

PDF

Resumen

Objetivo: Describir la evidencia científica disponible en relación con los trastornos neurológicos motores de instauración aguda asociados al SARS-CoV-2, por las modificaciones que representa en el diagnóstico diferencial en niños y adolescentes.

Adquisición de la evidencia: Se realizó la búsqueda de artículos con fecha de diciembre de 2019 a agosto de 2020, en la base de datos MEDLINE. Se consultaron un total de 95 trabajos en idioma español e inglés. Se utilizaron las palabras clave: coronavirus, COVID 19, neurología; trastornos motores.

Resultados: Las manifestaciones neurológicas descritas en la literatura, asociadas a la COVID-19, pueden incluir trastornos motores agudos. Por tanto, a partir de la pandemia, el diagnóstico diferencial de los niños y adolescentes con debilidad muscular o dificultades en la marcha de inicio agudo incluye, como una posible causa, el SARS-CoV-2.

Conclusiones: Se han descrito manifestaciones motoras de origen neurológico e instauración aguda asociadas a la COVID-19, entre ellas, las mielitis, las miositis, las polineuropatías y el síndrome de Guillain-Barre, lo que implica modificaciones en el diagnóstico diferencial en niños con trastornos motores de instalación aguda.

Palabras clave

coronavirus; SARS-CoV-2; COVID-19; complicaciones; neurología; trastorno motor

Referencias

Organización Mundial de la Salud. Parte de cierre de la OMS. 9 de septiembre de 2020. [citado: 10/09/2020]. Disponible en: https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/

Valdés Álvarez K, Chao Pereira C. La COVID-19: un reto para la salud mundial. Rev Cub Med. 2020;59(1):1-5.

Jin H, Hong C, Chen S, Zhou Y, Wang Y, Mao L, et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol. 2020 [citado: 14/06/2020];5(2):146-51. Doi: 10.1136/svn-2020-000382

Lyden P. Temporary Emergency Guidance to US Stroke Centers V During the COVID-19 Pandemic. On Behalf of the American Heart Association / American Stroke Association Stroke Council Leadership. Stroke. 2020;51(6):1910-2.

Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. medRxiv. 2020. Doi: https://doi.org/10.1101/2020.02.22.20026500

Ezpeleta D, García D. Manual COVID-19 para el neurólogo general. Madrid: Ediciones SEN; 2020.

Accinelli RA, Zhang-Xu CM, Ju-Wang JD, Yachachin-Chávez JM, Cáceres-Pizarro JA, Tafur- Bances KB, et al. COVID-19: La pandemia por el nuevo virus SARSCoV- 2. Rev Peru Med Exp Salud Pública. 2020 [citado: 14/06/2020];37(2). Disponible en: https://doi. org/10.17843/rpmesp.2020.372.5411

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-92.

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63:457-60.

Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020 Mar 17;382:1564-7.

Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences. May 2020;117(21):11727-34. Doi: 10.1073/pnas.2003138117

Li M, Li L, Zhang Y. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020 [citado: 14/06/2020];9:45. Disponible en: https://doi.org/10.1186/s40249-020-00662-x

Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARSCoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020 [citado: 14/06/2020];92(6):552-5. Doi: 10.1002/jmv.25728.

To KF, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARSCoV) and its putative receptor, angiotensin converting enzyme 2 (ACE2). J Pathol. 2004;203:740-3. Doi: 10.1002/path.1597

Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond). 2020;20:124-7.

Guan W, Ni Z, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Feb 28;382:1708-20.

Xu YH, Dong JH, An WM, Lv XY, Yin XP, Zhang JZ, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect. 2020;80(4):394-400. Doi: 10.1016/j.jinf.2020.02.017.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033-4.

Carod-Artal FJ. Complicaciones neurológicas por coronavirus y COVID-19. Rev Neurol. 2020 [citado: 14/06/2020];70:311-22. Disponible en: https://doi.org/10.33588/rn.7009.2020179

Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12:E14.

Netland J. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82:7264-6.

Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LA, et al. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. The Journal of Infectious Diseases. 2016;213(5):712-22. Disponible en: https://doi.org/10.1093/infdis/jiv499

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995-8. Doi: 10.1021/acschemneuro.0c00122.

Steardo L, Steardo LJr, Zorec R, Verkhratsky A. Neuroinfeccion may potentially contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiologica. 2020 [citado: 14/06/2020];229(3):e13473. Disponible en: https://doi.org/10.1111/apha.13473

Talan J. COVID-19: Neurologists in Italy to Colleagues in US: Look for Poorly Defined Neurologic Conditions in Patients with the Coronavirus. Neurology Today. 2020 March 27 [citado: 14/06/2020]. Disponible en: https://journals.lww.com/neurotodayonline/blog/breakingnews/pages/post.aspx?PostID=920

Kang Z, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. medRxiv preprint. 2020 [citado: 14/06/2020]. Disponible en: https://doi.org/10.1101/2020.03.16.20035105

Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19 associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features. Radiology. 2020;296(2). Doi: https://doi.org/10.1148/radiol.2020201187

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. Doi: https://doi.org/10.1016/S2213-2600(20)30076-X

Pei Fang W. Diagnosis and Treatment Protocol of Novel Coronavirus Pneumonia (Trial Version 7). Chin Med J. 2020;133(9):1087-95. Doi: 10.1097/CM9.0000000000000819

Desforges M, Favreau DJ, Brison É, Desjardins J, Meesen-Pinard M, Jacomy H, et al. Human Coronavirus: Respiratory Pathogens Revisited as Infectious Neuroinvasive, Neurotropic, and Neurovirulent Agents. In: Neuroviral infections: RNA viruses and retroviruses. Montreal: CRC press; 2013. p. 93-122.

Arabi YM, Balkhy HH, Hayden FG. Middle East Respiratory Syndrome. N Engl J Med. 2017;376(6):584-94. Doi: 10.1056/NEJMsr1408795

León R, Bender J, Velásquez L. Afectación del sistema nervioso por la COVID-19. Anales de la Academia de Ciencias de Cuba. 2020 [citado: 14/06/2020];10(2): especial COVID-19. Disponible en: http://www.revistaccuba.sld.cu/index.php/revacc/article/view/760/790

Bender J, León R, Mendieta M. Enfermedad cerebrovascular y COVID-19. Anales de la Academia de Ciencias de Cuba. 2020 [citado: 14/06/2020];10(2): especial COVID-19. Disponible en: http://www.revistaccuba.sld.cu/index.php/revacc/article/view/802/832

Guidon AC, Amato AA. COVID- 19 and neuromuscular disorders. Neurology. 2020;94(22):1-11. Doi: 10.1212/WNL.0000000000009566

Association of British Neurologists. Association of British Neurologists guidance on COVID-19 for people with neurological conditions, their doctors and carers. 22 de marzo de 2020 [citado: 14/06/2020]. Disponible en: https://www.google.com/url?sa=t&source=web&rct=j&url=https://cdn.ymaws.com/www.theabn.org/resource/collection/6750BAE6-4CBC-4DDB-A684-116E03BFE634/ABN_Neurology_COVID-19_Guidance_22.3.20.pdf&ved=2ahUKEwix87D6qp_yAhUoSTABHaSLBwoQFnoECAoQAg&usg=AOvVaw3FUXJyLfYHmp3nNQXWW71S

Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.

Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020;80(4):388-93. Doi: 10.1016/j.jinf.2020.02.016.

Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. 2019 novel coronavirus patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Medical Virol. 2020; 1-7 [citado: 14/06/2020]. Disponible en: 10.1002/jmv.25757

Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev. 2015;35(3):437-63. Doi: 10.1002/ med.21343

Ding Y, He L, Zhang Q. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622-30. Doi: 10.1002/path.1560

Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-2019. Emerg Infect Dis. 2020;26(7):1618-20.

Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARSCoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383-4. Doi: https://doi.org/10.1016/S1474-4422(20)30109-5

Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;10.62-5.

Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Mañas R, et al. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;95(5):e601-e605.

Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382:2574-6. Doi: 10.1056/NEJMc2009191.

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239-42. Doi: 10.1001/jama.2020.2648.

Wang XF, Yuan J, Zheng Y. Clinical and epidemiological characteristics of 34 children with 2019 novel coronavirus infection in Shenzhen. Zhonghua Er Ke Za Zhi. 2020;58:E008.

Hon KL, Leung CW, Cheng WT. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet. 2003;361:1701-3.

Cruz A, Zeichner S. COVID-19 en niños: caracterización inicial de la edad pediátrica. Pediatria. 2020;10. Doi: 10.1542/peds 2020-0834.

Ministerio de Salud Pública de Cuba. Parte de cierre del día 18 de abril a las 12 de la noche. 2020 [citado: 14/06/2020]. Disponible en: https://salud.msp.gob.cu/?p=4864.





Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.